Biomass to Hydrogen Robert J. Evans National Renewable Energy Laboratory Operated for the U.S. Department of Energy by Midwest Research Institute • Battelle • Bechtel ## NREL Biomass Feedstocks 6 $$CO_2$$ +6 H_2O \rightarrow $C_6H_{12}O_6$ +6 O_2 sunlight Potential: 15% of the world's energy by 2050. Fischer and Schrattenholzer, *Biomass and Bioenergy* 20 (2001) 151-159. #### **Crop residues** Forest residues Energy crops Animal waste Municipal waste Issues: Availability and Costs ## H₂ from Biomass #### Potential - H₂: the Inevitable Energy Carrier of the Future - Biomass is Renewable - Zero Net CO₂ Impact - Potential for Near Term Renewable H₂Deploym #### Challenges - No Completed Technology Demonstrations - Low Yield of H₂ - Not yet competitive with Natural Gas Steam Reforming - Requires Appropriate H₂ Storage and Utilization Scenarios ## Potential Impact - Bioenergy - Supply 15% of the world energy by 2050 150 EJ - Economic Renewable H2 in the Near Term - Deployment in Developing Energy Markets - The Biomass Refinery: Co-product Economics - Hydrogen As the Energy Carrier - Flexibility: Biological and Thermal Routes - -CHP - High Efficiency Conversion - Environmental Benefits - Allows Integration with other Renewable Technologies ## Biomass -> H₂ Integration #### Feedstock Supply - Biosolids - Animal waste - Sludges - Food wastes - MSW - Urban wood - Ag. residue - Forest waste - Energy crops - Designer crops ## Conversion Technology - Supercritical - Pyrolysis - Low pressure gasification - High pressure gasification - -Storable inter. reforming: ethanol methanol methane Pyrolysis oil ## Co-Product Markets - -Electricity - Fuelsethanolbiodiesel - Chemicals high value CO2 - Materials biopolymers biobased - -C Sequest. ## NREL Possible Development Scenario | | Near Term | Mid Term | Long Term | |----------|--|---|-------------------------| | Biomass | Resid. Biomass
Pyrolysis/ SR
Coproducts
Cofeed NG | + Energy Crops+ Gasification+ C Seqest.+ Adv. Coal | + Biomass
Refineries | | Hydrogen | On-Site Prod
Hythane
NG, Electrol. | + Storage
+ Dist. Gen.
+ Fuel Cells | + Hydrogen
Economy | #### **Economics** #### Major assumptions: - 15% after-tax IRR - 20 year plant life - nth plant - MACRS depreciation - 90% capacity factor - Equity financed ## **Biomass Gasification** ## **Multi-Stage Gasification** http://ww.ficfb.at ## **TPS Termiska Processer (SE)** - Feedstock variety - variety of biomass / waste feedstocks, RDF - Scale - 18 MWth test facility Värnamo (SE) - 2.5 MWth pilot in Studsvik (SE) - industrial units - ARBRE (UK): 25 MWth (40 000 t/a energy crops) - Greve in Chianti (IT): 2*18 MWth (200 t/d pelletised RDF) - Technology - pressurised CFB gasification - hot gas conditioning ## VTT Processes (FI) - Feedstock variety - biomass / waste - Scale - gasification - CFB: 60 MWth 19 t/h wood + waste (Lahti) - fixed bed:0.5 MWth (new pilot) - Technology - CFB gasification - fluid bed gasification - fixed bed updraft gasification - biomass fuel production # Research, Development and Deployment Challenges - Feedstock preparation - Gasification: gas conditioning - Pyrolysis: co-product development - Modular systems - System integration - Bio-oil reforming demonstration - Wet Biomass Demonstration ## NREL Pyrolysis Process Concept ## NREL TCPDU - Reformer Installation ## Reformer at TCUF ## NREL TCPDU - Hydrogen Production #### 5-13-2002 Exit Gas Composition (peanut) ### **Pyrolysis Mass Balance** ## **Blakely Georgia Site** | Research &
Development | <u>D</u> emonstration | | | |---|--|---|--| | | Initial System Prototypes | Refined
Prototypes | Commercial
Prototypes | | Research on component technologies General assessment of market needs Assess general magnitude of economics | Integrate component technologies Initial system prototype for debugging | Ongoing development to reduce costs or for other needed improvements "Technology" (systems) demonstrations Some small-scale "commercial" demonstrations | "Commercial" demonstration Full size system in "commercial" operating environment Communicate program results to early adopters/ selected niches | ## Scale up Plan ## NR≣L Biocarbon-Based Fertilizers #### **Impact assumptions** - Biomass target:15% of energy supply - Assume 1/3 goes to H2 = 5 exajoules for US - Model on GA with population 8 million (50% rural, 50% urban) Peanut shells are 10% of required Ag residues #### Assume equal supply: - Ag Residues - Forest residues - Energy Crops - Animal Manures - MSW - ~2 million tons/ year each - Low % of total potential # Traditional Facility Location #### **Biomass Facility Location** - Discrete Suppliers - Economies of Scale - Continuously-distributed Supply - Transportation Intensive - Economies of Scope # Qualitative Behavior of Total Costs for Processing Fixed Biomass Quantity ## Summary - Potential long term contribution of Bioenergy is 15% - Biomass to Renewable Hydrogen is a promising near term approach with Coproduct production - Pyrolysis with co-products \$7-9/MJ = Competitive! - Shakedown of 7 kg/hour Catalytic Fluid Bed Reactor for over 100 hours of operation - Work to begin at Georgia Site for 1000 hour run ## Acknowledgements - Support of the US DOE Hydrogen Fuel Cells and Infrastructure Technologies Program - Coworkers at NREL and Georgia Team - Clark Atlanta University - Scientific Carbons/ Eprida Inc - Enviro-Tech Enterprises Inc. - Georgia Institute of Technology